【期刊信息】

Message

刊名:计算机光盘软件与应用
主办:中国大恒公司大恒电子出版社
主管:中国科学院
ISSN:1007-9599
CN:11-3907/TP
语言:中文
周期:半月
影响因子:0
期刊分类:计算机软件及计算机应用

现在的位置:主页 > 综合新闻 >

比超级计算机快百万亿倍仅是量子计算“星辰大(2)

来源:计算机光盘软件与应用 【在线投稿】 栏目:综合新闻 时间:2021-02-25

作者:网站采编

关键词:

【摘要】对于经典计算机来说,N个比特只可能处在2N个状态中的一种情况,而对于量子比特来说,N个量子比特可以处于2N个状态任意比例叠加。理论上,如果对N个

对于经典计算机来说,N个比特只可能处在2N个状态中的一种情况,而对于量子比特来说,N个量子比特可以处于2N个状态任意比例叠加。理论上,如果对N个比特的量子叠加态进行运算操作,等于同时操控2的N次方个状态。随着可操纵比特数增加,信息的存储量和运算的速度会呈指数增加,经典计算机将望尘莫及。

有报道指出,一台30个量子比特的量子计算机的计算能力和一台每秒万亿次浮点运算的经典计算机水平相当,是今天经典台式机速度的一万倍。据科学家估计,一台50比特的量子计算机,在处理一些特定问题时,计算速度将超越现有最强的超级计算机。

多种发展方案未来可期

量子计算机是宏观尺度的量子器件,环境不可避免会导致量子相干性的消失(即消相干),一旦量子特性被破坏,将导致量子计算机并行运算能力基础消失,变成经典的串行运算,这是量子计算机研究的主要障碍。

即便量子计算机的研究已经出现诸多成果,但还处在早期发展的阶段。倘若类比经典计算机,今天的量子计算机几乎是位于经典计算机的电子管时代,就连最底层的物理载体还没有完全形成。

目前主流的技术路径有超导、半导、离子阱、光学以及量子拓扑这五个方向,前四种路径均已制作出物理原型机。各国科学家研究比较多、也相对成熟的有超导量子计算、半导量子点量子计算等。

超导量子计算的核心单元是一种“超导体-绝缘体-超导体”三层结构的约瑟夫森结电子器件,类似晶体管的PN结。其中间绝缘层的厚度不超过10纳米,能够形成一个势垒,超导电子能够隧穿该势垒形成超导电流。与其他量子体系相比,超导量子电路的能级结构可通过对电路的设计进行定制,或通过外加电磁信号进行调控。而且,基于现有的集成电路工艺,约瑟夫森结量子电路还具有可扩展性。这些优点使超导量子电路成为实现可扩展量子计算最有前景的物理方案之一。

量子点量子计算,是利用了半导体量子点中的电子自旋作为量子比特。量子点是一种有着三维量子强束缚的半导体异质结结构,其中电子的能级是分立的,类似于电子在原子中的能级结构,因此被称为“人造原子”。量子比特编码在电子的自旋态上,使用微波脉冲或者纯电学的方法进行单量子比特操控。量子点方案的优点则是量子位可以是嵌套在固态量子器件上,这与经典计算机的大规模集成电路的设计相似,被认为是最有可能实现大规模量子计算机的候选方案。

量子计算机的运算速度取决于其能够操控的量子比特数。由于消相干的存在,操控量子比特难免出现错误,从而计算失效。以超导量子计算为例,一亿次的操控最多只允许犯一次错误。操控量子比特难度如此之大,以至于早期许多科学家认为量子计算机不可能制造出来。

目前而言,超导量子芯片要比半导体量子芯片发展得更快。2019年,谷歌公司发布了53个超导量子比特的量子计算原型机“悬铃木”。2020年12月4日,中国科大潘建伟团队构建起76个光量子的量子计算原型机“九章”,处理高斯玻色取样的速度比目前最快的超级计算机快一百万亿倍。

不过,无论是“悬铃木”还是“九章”,目前都只是仅能够处理运算特定数学问题的“原型机”。而我们的“星辰大海”是造出有大规模容错能力的通用量子计算机。毕竟,量子时代的“未来已来”,超强的量子计算值得期待。



文章来源:《计算机光盘软件与应用》 网址: http://www.jsjgprjyyy.cn/zonghexinwen/2021/0225/581.html


上一篇:搞笑段子女同事换了新电脑,她把旧的送给我了
下一篇:风口上的量子计算机:核聚变一样的赌局,钻石